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Let [a,1l1 be a closed finite interval and C[a,lll the space of real
continuous functions on [a, Il1with norm

II h II = maxll h(x)l: a <. X <.Ill·

Let I and m be fixed nonnegative integers. Let R~[a, III be the set of ratios
P/Q, P a real polynomial of degree I, Q, of degree m, Q> 0 on [a, Ill. Let B
be a fixed element of C[a, Il1 not identically zero and p a fixed positive
number. Let W = lB * [P/QJP: P/Q E R~[a, Il], P> 0 on [a, Iln. Let
f(x) = B(x) * g(x), g E C[a, Il], g> 0 on la, Ill. Then our approximation
problem is to find w* = B * fP*/Q*JP E W minimizing

Ilf - B * [P/QJPII = IIB(g -IP/QIP)II

over B * [P/QlP E W. Such an element w* is called a best approximation to

f
The family W of approximations is a restriction of the family of approx-

imations of Schmidt [8], who permits P to be :>0 on [a, Il]. The family W is
a generalization of the family of approximations of Williams [10 1 who had
1= O.

Reasons for preferring this problem to the problem of Schmidt are as
follows. First, the constraint P > 0 is consistent with the constraint g > O. If
we let P:> 0 we should also let g:> O. Second, it is an open question whether
P/Q can be optimal in Schmidt's problem for 1, not an approximant, if P has
a zero. For example, let B = 1 and 1=0. Zero can never be best to g > 0, as
there is a constant c strictly between 0 and g. Third, as we will see, the
theory for P > 0 is simpler and there is an algorithm for computing best
approximations (if they are of maximum degree).
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DEFINITION. Let (} denote an exact degree. For P =k. 0 the degree of P/Q
with numerator and denominator relatively prime is 1+ m + 1 - d(P/Q),
where

d(P/Q) = min{l- OP, m - oQ}.

It is known that R~[a,,8] is varisolvent with degrees as defined above and
a degree for zero (l + 1). Meinardus and Schwedt showed that R ~ ra, ,8 I
satisfied their nonlinear Chebyshev hypotheses [7, pp. 160-161; 8,
pp. 311-312]. Barrar and Loeb [1] in turn showed that the hypotheses of
Meinardus and Schwedt implied varisolvence.

THEOREM. Let U be varisolvent and v be in C[a,,8]; {u: u E U, u > v f is
also varisolvent with the same degrees.

This theorem follows easily from the definition of varisolvence. We let
v=O.

THEOREM. Let U be varisolvent with elements >0, then UP is varisolvent
with degrees the same.

This follows from Theorem 1 of Kaufman and Belford [5].

From the above it follows that V={[P/QjP:P/QER~[a,,8]'P>O}is
verisolvent with degrees the same as for R~[a, ,8]. Alternatively we can
deduce that

U = {P/Q: P/Q E R~[a, ,8], P> 0 on [a, ,81f,

satisfies the nonlinear Chebyshev hypotheses of Meinardus and Schwedt,
hence so does Up. Thus the phenomenon of an optimal nonzero constant
error curve discussed by Ling and Tornga [6] cannot occur [6, p. 57].

The approximation problem can be considered as an approximation of g
by V with multiplicative weight B. This in turn is equivalent to an approx­
imation of g by V with nonnegative multiplicative weight IB I. Approximation
with respect to nonnegative weights is covered in the author's paper [41, from
which we obtain

THEOREM. B * [P/ Q]P of degree n is best to f = B * g if and only if
IBI (g - [P/Q]P) alternates n times on la, ,8]. A best approximation is
unique.

An analogue of the lemma of de la Vallee-Poussin applies [3, p. 226]. The
alternation result suggests use of the Remez algorithm if the best approx­
imation is of maximum degree. The analysis of Kahan as written by the
author [3] applies as modified in [4]. A version of the Remez algorithm that



312 CHARLES B. DUNHAM

can be adapted to the problem of this paper is given by the author 12]. We
take W= I/IBI, ?(y)=yP, r1(y)=yl/P.

THEOREM. Let w*=B[P*IQ*jP be best in W, then w* is best in
Schmidt's problem.

Proof Suppose not, then there is pSIQS such that ps>0, QS > 0, and

liB * (g- [psIQS]P)11 < liB * (g- [P*IQ*]P)II·

Consider now the approximation w= B * [[p* +PS]/fQ* + QSJlP. It is
between w* and B [PSI QS jP by betweeness arguments of the author [II,
p.152], hence IIBg-wll~IIBg-w*ll. But w* is uniquely best in Wand
wE W.
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